
Version: v1.0.3 (b77b0dd) 1

Monitoring With Prometheus

James Turnbull

June 7, 2019

Version: v1.0.3 (b77b0dd)

Website: Monitoring With Prometheus

http://www.prometheusbook.com

Some rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic,

mechanical or photocopying, recording, or otherwise, for commercial purposes
without the prior permission of the publisher.

This work is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of

this license, visit here.
© Copyright 2018 - James Turnbull <james@lovedthanlost.net>

http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:james+pm@lovedthanlost.net

Contents

Page

Chapter 1 Installation and Getting Started 1
Installing Prometheus . 2

Installing Prometheus on Linux . 3
Installing Prometheus on Microsoft Windows 4
Alternative Microsoft Windows installation 5
Alternative Mac OS X installation . 6
Stacks . 7
Installing via configuration management 7
Deploying via Kubernetes . 8

Configuring Prometheus . 8
Global . 10
Alerting . 11
Rule files . 12
Scrape configuration . 12

Starting the server . 14
Running Prometheus via Docker . 15

First metrics . 16
Prometheus expression browser . 17
Time series aggregation . 21
Capacity planning . 24

Memory . 25
Disk . 26

i

Contents

Summary . 27

List of Figures 28

List of Listings 29

Index 30

Version: v1.0.3 (b77b0dd) ii

Chapter 1

Installation and Getting Started

In the last chapter we got an overview of Prometheus. In this chapter, we’ll take
you through the process of installing Prometheus on a variety of platforms. This
chapter doesn’t provide instructions for the full list of supported platforms, but
a representative sampling to get you started. We’ll look at installing Prometheus
on:

• Linux.
• Microsoft Windows.
• Mac OS X.

The lessons here for installing Prometheus can be extended to other supported
platforms.

 NOTE We’ve written the examples in this book assuming Prometheus is
running on a Linux distribution. The examples should also work for Mac OS X but
might need tweaking for Microsoft Windows.

1

Chapter 1: Installation and Getting Started

We’ll also explore the basics of Prometheus configuration and scrape our first tar-
get: the Prometheus server itself. We’ll then use the metrics scraped to walk
through the basics of the inbuilt expression browser and see how to use the
Prometheus query language, PromQL, to glean interesting information from our
metrics. This will give you a base Prometheus server that we’ll build on in subse-
quent chapters.

Installing Prometheus
Prometheus is shipped as a single binary file. The Prometheus download page con-
tains tarballs containing the binaries for specific platforms. Currently Prometheus
is supported on:

• Linux: 32-bit, 64-bit, and ARM.
• Max OS X: 32-bit and 64-bit.
• FreeBSD: 32-bit, 64-bit, and ARM.
• OpenBSD: 32-bit, 64-bit, and ARM.
• NetBSD: 32-bit, 64-bit, and ARM.
• Microsoft Windows: 32-bit and 64-bit.
• DragonFly: 64-bit.

Older versions of Prometheus are available from the GitHub Releases page.

 NOTE At the time of writing, Prometheus was at version 2.3.2.

To get started, we’re going to show you how to manually install Prometheus in
the next few sections. At the end of this section we’ll also provide some links to
configuration management modules for installing Prometheus. If you’re deploying

Version: v1.0.3 (b77b0dd) 2

https://prometheus.io/download/
https://github.com/prometheus/prometheus/releases

Chapter 1: Installation and Getting Started

Prometheus into production or at scale you should always choose configuration
management as the installation approach.

Installing Prometheus on Linux
To install Prometheus on a 64-bit Linux host, we first download the binary file.
We can use wget or curl to get the file from the download site.

Listing 1.1: Download the Prometheus tarball

$ cd /tmp
$ wget https://github.com/prometheus/prometheus/releases/
download/v2.3.2/prometheus-2.3.2.linux-amd64.tar.gz

Now let’s unpack the prometheus binary from the tarball and move it somewhere
useful. We’ll also install promtool, which is a linter for Prometheus configuration.

Listing 1.2: Unpack the prometheus binary

$ tar -xzf prometheus-2.3.2.linux-amd64.tar.gz
$ sudo cp prometheus-2.3.2.linux-amd64/prometheus /usr/local/bin/

$ sudo cp prometheus-2.3.2.linux-amd64/promtool /usr/local/bin/

We can test if Prometheus is installed and in our path by checking its version using
the --version flag.

Version: v1.0.3 (b77b0dd) 3

Chapter 1: Installation and Getting Started

Listing 1.3: Checking the Prometheus version on Linux

$ prometheus --version
prometheus, version 2.3.2
(branch: HEAD, revision: 3569
eef8b1bc062bb5df43181b938277818f365b)
build user: root@bd4857492255
build date: 20171006-22:16:15
go version: go1.9.1

Now that we have Prometheus installed, you can skip down to looking at its con-
figuration, or you can continue to see how we install it on other platforms.

Installing Prometheus on Microsoft Windows
To install Prometheus onMicrosoft Windows we need to download the prometheus
.exe executable and put it in a directory. Let’s create a directory for the executable
using Powershell.

Listing 1.4: Creating a directory on Windows

C:\> MKDIR prometheus
C:\> CD prometheus

Now download Prometheus from the GitHub site:

Listing 1.5: Prometheus Windows download

https://github.com/prometheus/prometheus/releases/
download/v2.3.2/prometheus-2.3.2.windows-amd64.tar.gz

Version: v1.0.3 (b77b0dd) 4

Chapter 1: Installation and Getting Started

Unzip the executable using a tool like 7-Zip and put the contents of the unzipped
directory into the C:\prometheus directory.
Finally, add the C:\prometheus directory to the path. This will allow Windows to
find the executable. To do this, run this command inside Powershell.

Listing 1.6: Setting the Windows path

$env:Path += ";C:\prometheus"

You should now be able to run the prometheus.exe executable.

Listing 1.7: Checking the Prometheus version on Windows

C:\> prometheus.exe --version
prometheus, version 2.3.2
(branch: HEAD, revision: 3569
eef8b1bc062bb5df43181b938277818f365b)
build user: root@bd4857492255
build date: 20171006-22:16:15
go version: go1.9.1

You can use something like nssm, the Non-Sucking Service Manager, if you want
to run the Prometheus server as a service.

Alternative Microsoft Windows installation
You can also use a package manager to install Prometheus on Windows. The
Chocolatey package manager has a Prometheus package available. You can use
these instructions to install Chocolatey and then use the choco binary to install
Prometheus.

Version: v1.0.3 (b77b0dd) 5

http://www.7-zip.org/
https://nssm.cc/
https://chocolatey.org/
https://chocolatey.org/install

Chapter 1: Installation and Getting Started

Listing 1.8: Installing Prometheus via Chocolatey

C:\> choco install prometheus

Alternative Mac OS X installation
In addition to being available as a binary for Mac OS X, Prometheus is also avail-
able from Homebrew. If you use Homebrew to provision your Mac OS X hosts
then you can install Prometheus via the brew command.

Listing 1.9: Installing Prometheus via Homebrew

$ brew install prometheus

Homebrew will install the prometheus binary into the /usr/local/bin directory.
We can test that it is operating via the prometheus --version command.

Listing 1.10: Checking the Prometheus version on Mac OS X

$ prometheus --version
prometheus, version 2.3.2
(branch: HEAD, revision: 3569
eef8b1bc062bb5df43181b938277818f365b)
build user: root@bd4857492255
build date: 20171006-22:16:15
go version: go1.9.1

Version: v1.0.3 (b77b0dd) 6

https://prometheus.io/download/
http://brew.sh/

Chapter 1: Installation and Getting Started

Stacks
In addition to installing Prometheus standalone, there are several prebuilt stacks
available. These combine Prometheus with other tools—the Grafana console, for
instance.

• A Prometheus, Node Exporter, and Grafana docker-compose stack.
• Another Docker Compose single-node stack with Prometheus, Alertmanager,
Node Exporter, and Grafana.

• A Docker Swarm stack for Prometheus.

Installing via configuration management
There are also configuration management resources available for installing
Prometheus. Here are some examples for a variety of configuration management
tools:

• A Puppet module for Prometheus.
• A Chef cookbook for Prometheus.
• An Ansible role for Prometheus.
• A SaltStack formula for Prometheus.

 TIP Remember that configuration management is the recommended ap-
proach for installing and managing Prometheus!

Version: v1.0.3 (b77b0dd) 7

https://github.com/vegasbrianc/prometheus
https://github.com/danguita/prometheus-monitoring-stack
https://github.com/chmod666org/docker-swarm-prometheus
https://forge.puppet.com/puppet/prometheus
https://supermarket.chef.io/cookbooks/prometheus-platform
https://github.com/cloudalchemy/ansible-prometheus
https://github.com/bechtoldt/saltstack-prometheus-formula

Chapter 1: Installation and Getting Started

Deploying via Kubernetes
Last, there are many ways to deploy Prometheus on Kubernetes. The best way for
you to deploy likely depends greatly on your environment. You can build your
own deployments and expose Prometheus via a service, use one of a number of
bundled configurations, or you can use the Prometheus Operator from CoreOS.

Configuring Prometheus
Now that we have Prometheus installed let’s look at its configuration. Prometheus
is configured via YAML configuration files. When we run the prometheus bi-
nary (or prometheus.exe executable on Windows), we specify a configuration file.
Prometheus ships with a default configuration file: prometheus.yml. The file is in
the directory we’ve just unpacked. Let’s take a peek at it.

 TIP YAML configuration is fiddly and can be a real pain. You can validate
YAML online at YAML Lint or from the command line with a tool like this.

Version: v1.0.3 (b77b0dd) 8

https://github.com/giantswarm/kubernetes-prometheus
https://github.com/kayrus/prometheus-kubernetes
https://github.com/coreos/prometheus-operator
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
http://www.yamllint.com/
https://github.com/adrienverge/yamllint

Chapter 1: Installation and Getting Started

Listing 1.11: The default Prometheus configuration file

global:
scrape_interval: 15s
evaluation_interval: 15s

alerting:
alertmanagers:
-static_configs:
-targets:
-alertmanager:9093

rule_files:
-"first_rules.yml"
-"second_rules.yml"

scrape_configs:
-job_name: 'prometheus'
static_configs:
-targets: ['localhost:9090']

 NOTE We’ve removed some comments from the file for brevity’s sake. The
default file changes from time to time, so yours might not look exactly like this
one.

Our default configuration file has four YAML blocks defined: global, alerting,
rule_files, and scrape_configs.
Let’s look at each block.

Version: v1.0.3 (b77b0dd) 9

Chapter 1: Installation and Getting Started

Global
The first block, global, contains global settings for controlling the Prometheus
server’s behavior.
The first setting, the scrape_interval parameter, specifies the interval between
scrapes of any application or service—in our case, 15 seconds. This value will be
the resolution of your time series, the period in time that each data point in the
series covers.
It is possible to override this global scrape interval when collecting metrics from
specific places. Do not do this. Keep a single scrape interval globally across your
server. This ensures that all your time series data has the same resolution and
can be combined and calculated together. If you override the global scrape inter-
val, you risk having incoherent results from trying to compare data collected at
different intervals.

WARNING Only configure scrape intervals globally and keep resolution
consistent!

The evaluation_interval tells Prometheus how often to evaluate its rules. Rules
come in two major flavors: recording rules and alerting rules:

• Recording rules - Allow you to precompute frequent and expensive expres-
sions and to save their result as derived time series data.

• Alerting rules - Allow you to define alert conditions.

With this parameter, Prometheus will (re-)evaluate these rules every 15 seconds.
We’ll see more about rules in subsequent chapters.

Version: v1.0.3 (b77b0dd) 10

Chapter 1: Installation and Getting Started

 NOTE You can find the full Prometheus configuration reference in the
documentation.

Alerting
The second block, alerting, configures Prometheus’ alerting. As we mentioned
in the last chapter, alerting is provided by a standalone tool called Alertmanager.
Alertmanager is an independent alert management tool that can be clustered.

Listing 1.12: Alertmanager configuration

alerting:
alertmanagers:
-static_configs:
-targets:
-alertmanager:9093

In our default configuration, the alerting block contains the alerting configura-
tion for our server. The alertmanagers block lists each Alertmanager used by this
Prometheus server. The static_configs block indicates we’re going to specify
any Alertmanagers manually, which we have done in the targets array.

 TIP Prometheus also supports service discovery for Alertmanagers—for ex-
ample, rather than specifying each Alertmanager individually, you could query
an external source like a Consul server to return a list of available Alertmanagers.
We’ll see more about this in Chapters 5 and 6.

Version: v1.0.3 (b77b0dd) 11

https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://prometheus.io/docs/alerting/overview/

Chapter 1: Installation and Getting Started

In our case we don’t have an Alertmanager defined; instead we have a commented-
out example at alertmanager:9093. We can leave this commented out because
you don’t specifically need an Alertmanager defined to run Prometheus. We’ll add
an Alertmanager and configure it in Chapter 6.

 TIP We’ll see more about alerting in Chapter 6 and clustering alerting in
Chapter 7.

Rule files
The third block, rule_files, specifies a list of files that can contain recording or
alerting rules. We’ll make some use of these in the next chapter.

Scrape configuration
The last block, scrape_configs, specifies all of the targets that Prometheus will
scrape.
As we discovered in the last chapter, Prometheus calls the source of metrics it can
scrape endpoints. To scrape an endpoint, Prometheus defines configuration called
a target. This is the information required to perform the scrape—for example,
what labels to apply, any authentication required to connect, or other information
that defines how the scrape will occur. Groups of targets are called jobs. Inside
jobs, each target has a label called instance that uniquely identifies it.

Version: v1.0.3 (b77b0dd) 12

Chapter 1: Installation and Getting Started

Listing 1.13: The default Prometheus scrape configuration

scrape_configs:
-job_name: 'prometheus'
static_configs:
-targets: ['localhost:9090']

Our default configuration has one job defined called prometheus. Inside this job
we have a static_config block, which lists the targets this job will scrape. The
static_config block indicates that we’re going to individually list the targets we
want to scrape, rather than use any automated service discovery method. You can
think about static configuration as manual or human service discovery.

 TIP We’re going to look at methods to automatically discover targets to be
scraped in Chapter 5.

The default prometheus job has one target: the Prometheus server itself. It
scrapes localhost on port 9090, which returns the server’s own health metrics.
Prometheus assumes that metrics will be returned on the path /metrics, so
it appends this to the target and scrapes the address http://localhost:9090/
metrics.

 TIP You can override the default metrics path.

Version: v1.0.3 (b77b0dd) 13

https://prometheus.io/docs/operating/configuration/#%3Cstatic_config%3E

Chapter 1: Installation and Getting Started

Starting the server
Let’s start the server and see what happens. First, though, let’s move our configu-
ration file somewhere more suitable.

Listing 1.14: Moving the configuration file

$ sudo mkdir -p /etc/prometheus
$ sudo cp prometheus.yml /etc/prometheus/

Here we’ve created a directory, /etc/prometheus, to hold our configuration file,
and we’ve moved our new file into this directory.

Listing 1.15: Starting the Prometheus server

$ prometheus --config.file "/etc/prometheus/prometheus.yml"
level=info ts=2017-10-23T14:03:02.274562Z caller=main.go:216 msg
="Starting prometheus"...

We run the binary and specify our configuration file in the --config.file com-
mand line flag. Our Prometheus server is now running and scraping the instances
of the prometheus job and returning the results.
If something doesn’t work, you can validate your configuration with promtool, a
linter that ships with Prometheus.

Listing 1.16: Validating your configuration with promtool

$ promtool check config prometheus.yml
Checking prometheus.yml
SUCCESS: 0 rule files found

Version: v1.0.3 (b77b0dd) 14

Chapter 1: Installation and Getting Started

Running Prometheus via Docker
It’s also easy to run Prometheus in Docker. There’s a Docker image provided by
the Prometheus team available on the Docker Hub. You can execute it with the
docker command.

Listing 1.17: Running Prometheus with Docker

$ docker run -p 9090:9090 prom/prometheus

This will run a Prometheus server locally, with port 9090 bound to port 9090 inside
the Docker container. You can then browse to that port on your local host to see
your Prometheus server. The server is launched with a default configuration, and
you will need to provide custom configuration and data storage. You can take a
number of approaches here—for example, you could mount a configuration file
into the container.

Listing 1.18: Mounting a configuration file into the Docker container

$ docker run -p 9090:9090 -v /tmp/prometheus.yml:/etc/prometheus/
prometheus.yml prom/prometheus

This would bind mount the file /tmp/prometheus.yml into the container as the
Prometheus server’s configuration file.

 TIP You can find more information on running Prometheus with Docker in
the documentation.

Version: v1.0.3 (b77b0dd) 15

https://hub.docker.com/r/prom/prometheus/
https://hub.docker.com/r/prom/prometheus/
https://prometheus.io/docs/prometheus/latest/installation/#using-docker

Chapter 1: Installation and Getting Started

First metrics
Now that the server is running, let’s take a look at the endpoint we are scraping
and see some raw Prometheus metrics. To do this, let’s browse to the URL http
://localhost:9090/metrics and see what gets returned.

 NOTE In all our examples we assume you’re browsing on the server running
Prometheus, hence localhost.

Listing 1.19: Some sample raw metrics

HELP go_gc_duration_seconds A summary of the GC invocation
durations.
TYPE go_gc_duration_seconds summary
go_gc_duration_seconds{quantile="0"} 1.6166e−05
go_gc_duration_seconds{quantile="0.25"} 3.8655e−05
go_gc_duration_seconds{quantile="0.5"} 5.3416e−05
. . .

Here we can see our first Prometheus metrics. These look much like the data
model we saw in the last chapter.

Listing 1.20: A raw metric

go_gc_duration_seconds{quantile="0.5"} 1.6166e−05

The name of our metric is go_gc_duration_seconds. We can see one label on the
metric, quantile="0.5", indicating this is measuring the 50th percentile, and the

Version: v1.0.3 (b77b0dd) 16

Chapter 1: Installation and Getting Started

value of the metric.

Prometheus expression browser
It is not user friendly to view our metrics this way, though, so let’s make use of
Prometheus’ inbuilt expression browser. It’s available on the Prometheus server
by browsing to http://localhost:9090/graph.

 TIP The Prometheus Expression browser and web interface have other use-
ful information, like the status of targets and the rules and configuration of the
Prometheus server. Make sure you check out all the interface menu items.

Figure 1.1: Prometheus expression browser

Let’s find the go_gc_duration_seconds metric using the expression browser. To

Version: v1.0.3 (b77b0dd) 17

Chapter 1: Installation and Getting Started

do this, we can either open the dropdown list of available metrics or we can type
the metric name into the query box. We then click the Execute button to display
all the metrics with this name.

Figure 1.2: List of metrics

We can see a list of metrics here, each decorated with one or more labels. Let’s
find the 50th percentile in the list.

Listing 1.21: Go garbage collection 50th percentile

go_gc_duration_seconds{instance="localhost:9090",
job="prometheus",quantile="0.5"}

We can see that two new labels have been added to our metrics. This has been
done automatically by Prometheus during the scrape process. The first new label,
instance, is the target from which we scraped the metrics. The second label, job,
is the name of the job that scraped the metrics. Labels provide dimensions to our
metrics. They allow us to query or work with multiple or specific metrics—for
example, Go garbage collection metrics for multiple targets.

Version: v1.0.3 (b77b0dd) 18

Chapter 1: Installation and Getting Started

 TIP We’ll see a lot more about labels in the next chapter and later in the
book.

Prometheus has a highly flexible expression language called PromQL built into
the server, allowing you to query and aggregate metrics. We can use this query
language in the query input box at the top of the interface.

Figure 1.3: Querying quantiles

Here we’ve queried all metrics with a label of quantile="0.5" and it has returned
a possible 86 metrics. This set is one of the four data types that expressions in the
PromQL querying language can return. This type is called an instant vector: a set
of time series containing a single sample for each time series, all sharing the same
timestamp. We can also return instant vectors for metrics by querying a name
and a label. Let’s go back to our go_gc_duration_seconds but this time the 75th
percentile. Specify:
go_gc_duration_seconds{quantile="0.75"}

In the input box and click Execute to search. It should return an instant vector
that matches the query. We can also negate or match a label using a regular
expression.
go_gc_duration_seconds{quantile!="0.75"}

Version: v1.0.3 (b77b0dd) 19

https://prometheus.io/docs/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/#expression-language-data-types

Chapter 1: Installation and Getting Started

This will return an instant vector of all the metrics with a quantile label not equal
to 0.75.

 TIP If we’re used to tools like Graphite, querying labels is like parsing dotted-
string named metrics. There’s a blog post that provides a side-by-side comparison
of how Graphite, InfluxDB, and Prometheus handle a variety of queries.

Let’s look at another metric, this one called prometheus_build_info, that contains
information about the Prometheus server’s build. Put prometheus_build_info
into the expression browser’s query box and click Execute to return the metric.
You’ll see an entry like so:

Listing 1.22: The prometheus_build_info metric

prometheus_build_info{branch="HEAD",goversion="go1.9.1",
instance="localhost:9090",job="prometheus",
revision="5ab8834befbd92241a88976c790ace7543edcd59",
version="2.3.2"}

You can see the metric is heavily decorated with labels and has a value of 1. This is
a common pattern for passing information to the Prometheus server using a metric.
It uses a metric with a perpetual value of 1, and with the relevant information you
might want attached via labels. We’ll see more of these types of informational
metrics later in the book.

Version: v1.0.3 (b77b0dd) 20

https://www.robustperception.io/translating-between-monitoring-languages/
https://www.robustperception.io/translating-between-monitoring-languages/

Chapter 1: Installation and Getting Started

Time series aggregation
The interface can also do complex aggregation of metrics. Let’s choose another
metric, promhttp_metric_handler_requests_total, which is the total HTTP re-
quests made by scrapes in the Prometheus server. Query for that now by specifying
its name and clicking Execute.

Figure 1.4: Querying total HTTP requests

We have a list of HTTP request metrics. But what we really want is the total
HTTP requests per job. To do this, we need to create a new metric via a query.
Prometheus’ querying language, PromQL, has a large collection of expressions and
functions that can help us do this.
Let’s start by summing the HTTP requests by job. Add the following to the query
box and click Execute.
sum(promhttp_metric_handler_requests_total)

This new query uses the sum() operator on the promhttp_metric_handler_requests_total
metric. It adds up all of the requests but doesn’t break it down by job. To do that
we need to aggregate over a specific label dimension. PromQL has a clause called
by that will allow us to aggregate by a specific dimension. Add the following to
the query box and then click Execute.

Version: v1.0.3 (b77b0dd) 21

https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/operators/

Chapter 1: Installation and Getting Started

sum(promhttp_metric_handler_requests_total)by (job)

 TIP PromQL also has a clause called without that aggregates without a spe-
cific dimension.

You should see something like the following output:

Figure 1.5: Calculating total HTTP requests by job

Now click the Graph tab to see this metric represented as a plot.

 TIP The folks at Robust Perception have a great blog post on common query-
ing patterns.

The new output is still not quite useful—let’s convert it into a rate. Update our
query to:
sum(rate(promhttp_metric_handler_requests_total[5m]))by (job)

Here we’ve added a new function: rate(). We’ve inserted it inside our sum func-
tion.

Version: v1.0.3 (b77b0dd) 22

https://www.robustperception.io/common-query-patterns-in-promql/
https://www.robustperception.io/common-query-patterns-in-promql/
https://prometheus.io/docs/prometheus/latest/querying/functions/#rate()
https://www.robustperception.io/rate-then-sum-never-sum-then-rate/
https://www.robustperception.io/rate-then-sum-never-sum-then-rate/

Chapter 1: Installation and Getting Started

rate(promhttp_metric_handler_requests_total[5m])

The rate() function calculates the per-second average rate of increase of the time
series in a range. The rate function should only be used with counters. It is quite
clever and automatically adjusts for breaks, like a counter being reset when the
resource is restarted, and extrapolates to take care of gaps in the time series, such
as a missed scrape. The rate() function is best used for slower-moving counters
or for alerting purposes.

 TIP There’s also an irate() function to calculate the instant rate of increase
for faster-moving timers.

Here we’re calculating the rate over a five-minute range vector. Range vectors
are a second PromQL data type containing a set of time series with a range of
data points over time for each time series. Range vectors allow us to display the
time series for that period. The duration of the range is enclosed in [] and has an
integer value followed by a unit abbreviation:

• s for seconds.
• m for minutes.
• h for hours.
• d for days.
• w for weeks.
• y for years.

So here [5m] is a five-minute range.

 TIP The other two PromQL data types are Scalars, numeric floating-point
values, and Strings, which is a string value and is currently unused.

Version: v1.0.3 (b77b0dd) 23

https://prometheus.io/docs/prometheus/latest/querying/functions/#irate
https://prometheus.io/docs/prometheus/latest/querying/basics/#range-vector-selectors

Chapter 1: Installation and Getting Started

Let’s Execute that query and see the resulting range vector of time series.

Figure 1.6: Our rate query

Cool! We’ve now got a new metric that is actually useful for tracking or graphing.
Now that we’ve walked through the basics of Prometheus operation, let’s look at
some of the requirements for running a Prometheus server.

Capacity planning
Prometheus performance is hard to estimate because it depends greatly on your
configuration, the volume of time series you collect, and the complexity of any
rules on the server. There are two capacity concerns: memory and disk.

 TIP We’ll look at Prometheus scaling concepts in Chapter 7.

Version: v1.0.3 (b77b0dd) 24

Chapter 1: Installation and Getting Started

Memory
Prometheus does a lot in memory. It consumes process memory for each time
series collected and for querying, recording rules, and the like. There’s not a lot
of data on capacity planning for Prometheus, especially since 2.0 was released, but
a good, rough, rule of thumb is to multiply the number of samples being collected
per second by the size of the samples. We can see the rate of sample collection
using this query.
rate(prometheus_tsdb_head_samples_appended_total[1m])

This will show you the per-second rate of samples being added to the database
over the last minute.
If you want to know the number of metrics you’re collecting you can use:
sum(count by (__name__)({__name__=\~"\.\+"}))

This uses the sum aggregation to add up a count of all metrics that match, using
the =~ operator, the regular expression of .+, or all metrics.
Each sample is generally one to two bytes in size. Let’s err on the side of caution
and use two bytes. Assuming we’re collecting 100,000 samples per second for 12
hours, we can work out memory usage like so:
100,000 * 2 bytes * 43200 seconds

Or roughly 8.64 GB of RAM.
You’ll also need to factor in memory use for querying and recording rules. This
is very rough and dependent on a lot of other variables. I recommend playing
things by ear with regard to memory usage. You can see the memory usage of the
Prometheus process by checking the process_resident_memory_bytes metric.

Version: v1.0.3 (b77b0dd) 25

Chapter 1: Installation and Getting Started

Disk
Disk usage is bound by the volume of time series stored and the retention of those
time series. By default, metrics are stored for 15 days in the local time series
database. The location of the database and the retention period are controlled by
command line options.

• The --storage.tsdb.path option, which has a default directory of data lo-
cated in the directory fromwhich you are running Prometheus, controls your
time series database location.

• The --storage.tsdb.retention controls retention of time series. The de-
fault is 15d representing 15 days.

 TIP The best disk for time series databases is SSD. You should use SSDs.

For our 100,000 samples per second example, we know each sample collected in
a time series occupies about one to two bytes on disk. Assuming two bytes per
sample, then a time series retained for 15 days would mean needing about 259
GB of disk.

 TIP There’s more information on Prometheus disk usage in the Storage doc-
umentation.

Version: v1.0.3 (b77b0dd) 26

https://www.youtube.com/watch?v=H7PJ1oeEyGg
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/storage/

Chapter 1: Installation and Getting Started

Summary
In this chapter we installed Prometheus and configured its basic operation. We
also scraped our first target, the Prometheus server itself. We made use of the met-
rics collected by the scrape to see how the inbuilt expression browser works, in-
cluding graphing our metrics and deriving new metrics using Prometheus’s query
language, PromQL.
In the next chapter we’ll use Prometheus to collect some host metrics, including
collecting from Docker containers. We’ll also see a lot more about scraping, jobs,
and labels, and we’ll have our first introduction to recording rules.

Version: v1.0.3 (b77b0dd) 27

List of Figures

1.1 Prometheus expression browser . 17
1.2 List of metrics . 18
1.3 Querying quantiles . 19
1.4 Querying total HTTP requests . 21
1.5 Calculating total HTTP requests by job 22
1.6 Our rate query . 24

28

Listings

1.1 Download the Prometheus tarball . 3
1.2 Unpack the prometheus binary . 3
1.3 Checking the Prometheus version on Linux 4
1.4 Creating a directory on Windows . 4
1.5 Prometheus Windows download . 4
1.6 Setting the Windows path . 5
1.7 Checking the Prometheus version on Windows 5
1.8 Installing Prometheus via Chocolatey 6
1.9 Installing Prometheus via Homebrew 6
1.10 Checking the Prometheus version on Mac OS X 6
1.11 The default Prometheus configuration file 9
1.12 Alertmanager configuration . 11
1.13 The default Prometheus scrape configuration 13
1.14 Moving the configuration file . 14
1.15 Starting the Prometheus server . 14
1.16 Validating your configuration with promtool 14
1.17 Running Prometheus with Docker . 15
1.18 Mounting a configuration file into the Docker container 15
1.19 Some sample raw metrics . 16
1.20 A raw metric . 16
1.21 Go garbage collection 50th percentile 18
1.22 The prometheus_build_info metric . 20

29

Index
Aggregation, 21
Alerting, 11
Alerting rules, 10
Alertmanager, 11
Ansible, 7

Capacity planning, 24
Chef, 7
Chocolatey, 5
Configuration, 8, 14
Configuration Management, 3, 7

Endpoints, 12
Expression browser, 17

global
evaluation_interval, 10
scrape_interval, 10

Granularity, 10

Homebrew, 6

Installation, 2
Linux, 3
Mac OS X, 6
Microsoft Windows, 4, 5

Windows, 4
Installing onto Kubernetes, 8
Installing via configuration manage-

ment, 7
Instances, 12

Job definition, 13
job_name, 13
Jobs, 12

Kubernetes, 8

Prometheus
configuration, 8
disk usage, 24
installation
Linux, 3
OS X, 6
Windows, 4

memory usage, 24
Web interface, 17

prometheus
–config.file, 14
–version, 3

prometheus.yml, 8

30

Index

PromQL, 19, 21
by, 21
irate, 23
Range vectors, 23
rate, 22
Scalar, 23
String, 23
without, 21

promtool, 3, 8, 14
Puppet, 7

Querying labels, 19

Range vectors, 23
Recording rules, 10
Resolution, 10
Rule files, 12
rule_files, 12
Rules, 10

SaltStack, 7
Scrape configuration, 12
Scrape interval, 10
scrape_configs, 12
SSD, 26
Supported platforms, 2

Targets, 12

YAML, 8
YAML validation, 8

Version: v1.0.3 (b77b0dd) 31

Thanks! I hope you enjoyed the book.

© Copyright 2018 - James Turnbull <james@lovedthanlost.net>

mailto:james+pm@lovedthanlost.net

	Installation and Getting Started
	Installing Prometheus
	Installing Prometheus on Linux
	Installing Prometheus on Microsoft Windows
	Alternative Microsoft Windows installation
	Alternative Mac OS X installation
	Stacks
	Installing via configuration management
	Deploying via Kubernetes

	Configuring Prometheus
	Global
	Alerting
	Rule files
	Scrape configuration

	Starting the server
	Running Prometheus via Docker

	First metrics
	Prometheus expression browser
	Time series aggregation
	Capacity planning
	Memory
	Disk

	Summary

	List of Figures
	List of Listings
	Index

